Repositories & CLIs —“Code as cattle not pets”

Presenter: Brian Greene | CTO NeuronSphere

Is each source repository in your org its own unique pet?
Does each one require special incantations to build or test?

Is CI/CD consistent and transparent?

Accounting for cross-technology & lifecycle repository management demands and how to design an extensible CLI framework to streamline developer workflows

Neuron &e Sphere’

(what)

Find & Make Change

Goals (want) Strategy (how)

/ |. Apply a component-based development approach,
|. Allow developers to think S, Fum Uit Toet PPYY . P P PP
| Build, Run 4 anchored in a poly-repo code management strategy:
less & go faster L
, , * Everything is Code
2. Make it easier to break , | : .
Package | * Universal Versioning

Conway’s Law
3. Produce higher-quality
software

* Dependency Management
* Packaging Consistency
* Artifact Output/Distribution
2. Invert and unify CLls to manage #I

* Assumes we are doing N of
things

Deploy

T * If everything is code, and the code is laid out

consistently, then the repo is the parameter!

Integration\Test

Conway’s Law: Any organization that designs a system (defined broadly) will produce a design whose structure is a copy of the
organization's communication structure.

Anti-Conway Software* delivery starts with many small repositories focused on artifact interaction patterns with orthogonal tooling to manage them

Neuron &e Sphere’

Example Before

Simple App Ecosystem

End User Analytics Consumer

\
|
|

data-téam-repo

\
Dashboards & Reports

apps-repo | '|
- x
Extraction (

Job 2 ‘ Web Application(s) Consumption Views

X 7 \‘\ »)

Curated Tables

<

External CSV
Source N

w
=
]
Q
=
=]
oy
=
o
«w

=4 A

i
1
i
1
1
i
i
|
i
| App 1 Db Schema
I
i
i
i
|
i
i
|

Extraction g Extraction Extraction
[runsen T ob 1 | | Job4 Job 3
I\ , 7 - ,;’ ‘ 3 :
\ - - - - - - !
! s - -__——‘—..,\"’ inaan -
v infra-repo, * \ i
vy) I v
Ingest Compute ‘ ETL Compute

Shared Database

Neuron &e Sphere’

bi-transport-dash 2.4.5

After (with revs)

Decomposed App Ecosystem

End User

a8 Analytics Consumer
/EFP CAM

\ Data Contract(s) ,’Dala Contract(s)
.

N /

A ¥

-
EN

data-ent-etl 1.7.2

data-custom-ingest 1.4.1 ‘ { web-public-transport 2.3.0 ‘

\

N

[External CSV
' Source N /

data-dw-schemas 2.1.1 infra-etl-cluster 1.5.0

(runs on)

{runs on) uns Meta Db (runs on) (runs on)
A/
/// “\

inf-db-shared 1.2.5 ‘

'll[runs on)

—y

infra-trans-compute 1.3.2 r-—r

Code Repositories (as)

main.source

“Everything is code in git” is a great baseline ~
- but not nearly enough

logic.source

> build *.source

We all have a diverse architecture that's growing
produces
- Software, Data models, Infrastructure, Analytics, Security '

Runnable Program* :

persistence.source |

It exists as a collection of self-referencing, version-able, components

representable as Artifacts
- (whether you manage it that way or not today)

All technologies provide mechanisms for reuse, inclusion, reference,
leading to the core capabilities of:

* Versioning

* Packaging

* Dependencies

* Artifacts (Distribution)

Many challenges are easier after consistently solving these basic
problems at a cross-team, cross-technology, platform level

Neuron &e Sphere’

~Architectural Quantum

Software Delivery Through Publishing

dependency
declarations

/_—-'/vermes

- - rsi .
installer scripts xiee::?ﬁlr Documentation

':\ifflii‘:;;;f.__\\, _—

program icon.svg company logo.png

> package *

produces

Y

Distribution_Artifact V=x.y ‘

input to

> publish 'Distribution_Artifact V=x.y'

-~ \,—v*.f"\/—'\/iv—v \/_\’_\"v‘v'\,__\

g Artifact Repository 2
\ |Distribution_Artifact Collection\ !
[ommme oo | 3
> Distribution_Artifact V=x.y.z 4
> L - {
§)
A

NAAANANAANANAANAAN

- An example of a collection of repos

What’s a basic standard repo look like? I pmlcbaccou

@ hmd-cli-deploy

-Very mvp @ hmd-cli-docker
v 8 org-demo-bare The manifest is a contract:) S g s
= . > @ docs
v M meta-data with other repos e
I tx
: ma”'sfe;t"“" * with platform tooling s B meta-data
VERSION . . -
T * with a deployment environment v sre
v @ <technology._facet> VERSION is a touchstone A> M python
> M code* The layout is a contract: > W test
= ; * M hmd-cli-helm
> [l unit_tests * Orthogonal platform tooling is easy to develop with a consistent S B docs
repository layout > M meta-data
B README.md
- Docs and Integration tests, better SLEE
v @ org-demo-bare-1 h> M test
v I docs > B hmd-cli-installbuilder
B indexrst - Example of ‘facets’ (rather than by tech) el il
> [meta-data VB org-demo-bare- > @ hmd-cli-librarian-sync-manager
N !_STC > [docs > @ hmd-cli-librarian-sync-watcher
i:,d“ker v i meta-data > i hmd-cli-login
ava =
> ; membufs R manifest.json > B hmd-cli-mickey
vl ;est i B VERSION > @ hmd-cli-neuronsphere
B example_test_<facet>.robot v I src > B hmd-cli-ns-bootstrap
v B docker > @ hmd-cli-opa
§ R Dockerfile > @ hmd-cli-plugin-project-repos
v I gateway_config > B hmd-cli-projects
R demo-2-config.json B hmd-cli-python
v [python > [docs
> d b »
”-? em‘;—k are B LICENSE.txt
W tf_py_c > B meta-data
. demo_bare_terraform.py =
- v [l src
> B test =
> @8 python
> [test

Neuron &e Sphere’ i

> B hmd-cli-secrets

Inverted, platform-supported CLls for speed and governance

“How to build this repository?”’— a question no dev in a platform ecosystem should ever have to utter.

Repositories with a standardized layout and interaction models gain an exponential lift by having CLIs that work with a type of repository
or perform actions on all standard repositories to the same effect.

Example commands:

A “good CLI” in this strategy:

demo code/repo x/:> build * wraps a technology or facet into a consistent CLI command &

demo code/repo x/:> <tech x> package lifecycle interface

demo code/repo x/:> <tech y> publish * interacts with the manifest for per-repo overrides & config

demo code/repo x/:> docs * Consistently interacts with the standard layout wrt working space
ClLls are governed by the platform Org X <technology_facet/> list Template(s) Build (&ut) Package Publish Deploy Int-Test*
team, built by technology
practitioners - harmonizing behaviors Java (lib/app) 2 Y Y Y Y na
while encoding standards and defaults
orthogonally. Protobuf defs I Y & & na na
A standard layout allows the platform Docker (general) | Y na Y na L/iC
team to determine where CLIs are DB Migrations? (e.g.: /src/alembic) I Y Y Y na C
missing & where common options need
to be reconsidered. SQL Scripts (Snowflake T &V) 2 na zip Y C
This makes Cl much easier to reason ETL Configs 2 ! zip C?
about, as the CLls that devs use locally to Tiorest N Y —— Y - L

build a repo will build it anywhere

Neuron &e Sphere’

How to start now (new repos)

Decide on a few facets and technologies you need N of, libs in your default lang is a good first choice
Docker images a decent second

Docs and diagrams as code a reasonable third

A couple layered templates

Probably some Infrastructure as Code modules - TF module, SLS base pieces, or Pulimi all decent options

el U S

How to scale & impact legacy code

|. Then you scale the practice by iteratively applying it to existing repos, chopping them up as reasonable and useful
* Find a place in your architecture that causes release management challenges, or is deeply challenged by Conway's
law, and break things up
2. Extract and version a data model so its code generation generates external libs rather than in-build-situ "temp" libs
3. Look for subsections you wish you had better testing for, and use extraction to a repo as a lever
4. Infra-instances & multi-instance configs are another place where separation of concerns by repo facet can be
operationally impactful (deploy app v=x with config v=y to target=z)

Neuron &e Sphere’

Common Responses

|. <foo/> uses a monorepo

2. | don't like microservices

3. Generated repos get stale

4. Dev teams should have the flexibility to define their own repo layouts
5. You need tooling for this

6. Same problems in a monorepo/you can do that in a monorepo

/. This is painful with gitflow

Neuron &e Sphere’

Common Side-Effects

|. ‘Architecting with repos’ will naturally produce a more modular, maintainable, and testable ecosystem of
software components, regardless of target deployment architecture

2. Easy to create mechanisms to express runtime dependencies as abstractions for service-locator style
interactions

3. It’s easier to perform meta-analysis on the codebase (e.g.: do <x> to all the python libs is much easier to
reason about, as is the question “how much documentation do we have for component y?”)

4. Larger experiments with design happen faster with the reusable components and architecture patterns —
it is easier to propose new things and see how they will fit (this works quite well for Infra as Code)

5. Developers can move across larger expanses of code more quickly, focusing on learning a new tech or
subsection rather than the ideas of each repository designer or vendor

6. Provides a clear path for how to introduce a new kind of technology into the ecosystem as a one-off and
then with developed standards and harmonized tooling — a happy path for the platform team!

/. Standardized wrapper ClLls also allow instrumentation and governance around tool use in the software
supply chain

8. Pairs well with Trunk Based Development and aggressive and automated CI/CDD ecosystems

Neuron &e Sphere’

[Dev] Env

Data Services
Ot h er Exa m I es — e
g ” Depends
« ¥ N
[default_argo (repo) default_trino (repo) default_airflow (repo)
{ g 7 T
(A |
| [
Domain Services | / | |
stream Service (repo) user Service (repo) [| |
| | | |
ams NS Librarian stream NS Microservice user NS Microservice | \ \ |
streams Y stream user | \ ¥ \ \
sl | \ \ I
streams W@ docker stream NS Language Pack | stream W@ docker user Jupyter Notebooks user i docker i | data_lake Librarian (repo) | \ | clepends
NS Service Container | Sroam ™ "angtage ™ NS Service Container Bl NS Service Container - y ST raTan TR [
—— A~ — A AR A AR \
) ; e | . N— S

pends |

————_Depends "\ Depends

streams streams o —— streams stroam stream o user user user Infra [Dev]| / \ \ \ \
l—&) a W ™ ¥ N \ \ \
g% @i \ @ default_rds (repo) ‘ policy Service (repo) default_kafka (repo) ‘ ‘ default_neptune (repo) cluster Service (repo)

db schema) db schema) db schema) |
(namespaced) ((p,gm",.g..p,.,) Table Primary Bucket (namespaced) (F.g,....y.g,,ph)) Table (namespaced) ((p,gnm,.g,apm) Table | [

|
LA
default_eks (repo) f

= =] = 9
Irstanc: pytorsenvar irstanc: locak gloway Irstanca: m deloyment Irstanca: . procts
s DEPLOVED sstus: DEPLOYED shtus: DEPLOYED stz DEPLOYED 7| smus:OepLOVED
=) = a =
irstancs: 001 img Fansrm mapargust rtancs: 00" img ransrmcan {ratance: hma-tmickey irstancs: hmd-mo-aifow irstancs: me-naming rstancs: ot irstanc: e base-auoscaler rstance: sl instance: fa-data irstane: a0
GRS BT ma ranlrm ma paretd 126 2700 maratorm an .17 R ity 0230 B! mg-afow1.56 SR menaming0.1.44 s i i auBsEa1670.1.10
s8uE: DEPLOYED. s DEPLOYED Stus: DEPLOVED st DEPLOVED sstus: DEPLOYED Shtus: DEPLOVED

Situs: DEPLOYED Stus: DEPLOVED st DEPLOYED st DEPLOVED

irstance: prulder
class: b oot uld01.46.
S DEPLOVED

irstancs: dhaccount raming
s e cabase-aczourt0 1.3
Situs: DEPLOYED

> irstance: aubrizar irstance: extsecrots

[r—
clss: - slbucket.1.8
Shtus: DEPLOVED

g heim
clss: i drtogc hom0.1.5
sstus: DEPLOYED.

Sius: DEPLOYED st DEPLOYED st DEPLOYED

| sews:Deploven setus: DEPLOYED

irstance: admin-grh
b gt eptune0.47
SERBETEvE

irstanc: m- dtaccount Irstancs: cora-s \ \

st DEPLOYED

\LJ/
v ¥

[
/ ———

rstance: cagraup \ \ irstanc: ap gdtoway irstanc: opa bucket - |
| dmasaromsie ot g 13 \ caadayomba | basope e v e oritzots ||
\ e DEPLOVED \ sur DEPLOVED “etn DEPLOYED ot OEPLOYED |) y
. . - /
o s
cam T oy artdas 0110 pri P
o B loVED 5

SERIBBESA

{rstance: basa dtadog
clss: - ctadog.1.12
S8tus: DEPLOYED

Neuron &a Sphere

4 :
Neuron y:@ Sphere

Platform engineering for [data]

